

Maternal breast milk secretor phenotype does not affect infant susceptibility to rotavirus diarrhea

International Rotavirus Symposium Nusa Dua, Bali, Indonesia March 15, 2023

Benjamin Lee, M.D.

Vaccine Testing Center

Translational Global Infectious Diseases Research Center

University of Vermont

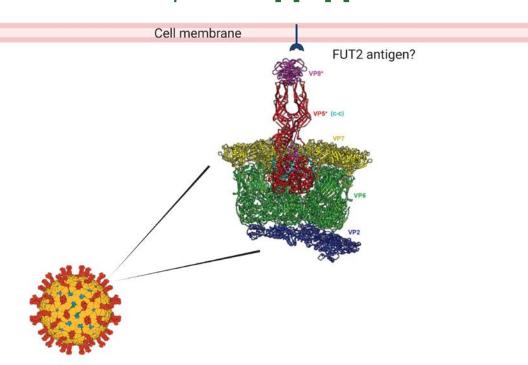
Acknowledgements

Benjamin Lee, Frank Williams, Md Abdul Kader, Dorothy M. Dickson, E. Ross Colgate, Masud Alam, Rashidul Haque, William A. Petri, Jr., Beth D. Kirkpatrick

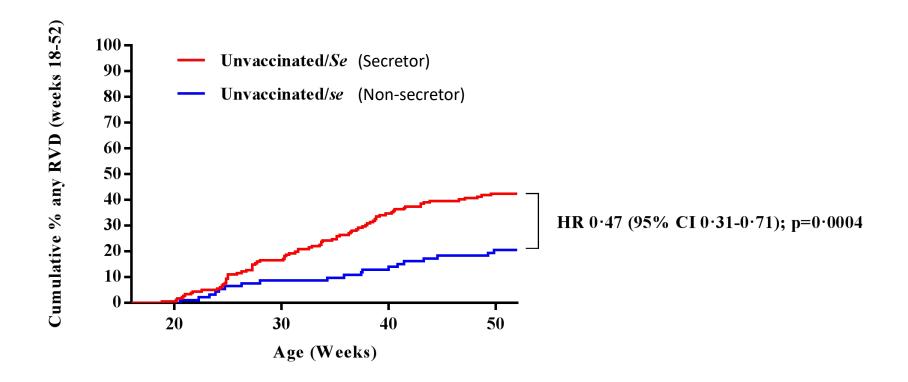
Objectives

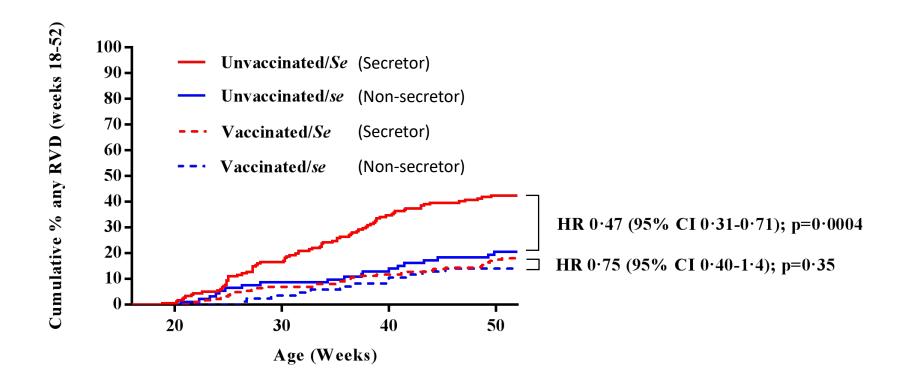
- Basic introduction to secretor status
 - Infant secretor status in rotavirus diarrhea
 - Infant and maternal secretor status in rotavirus vaccination
- Maternal secretor status in rotavirus diarrhea
- Conclusions

Overview of secretor status


- Individuals are either secretors or non-secretors, based on ability to express specific oligosaccharides
 - Exocrine secretions (e.g. saliva, breast milk)
 - Mucosal surfaces (e.g. gut)
- Secretor status is determined by FUT2 $\alpha(1,2)$ -fucosyltransferase expression

Overview of secretor status


- FUT2-dependent antigens may act as cellular receptors, facilitating infection in a genotype-specific manner
 - Non-secretors less susceptible to P[8], P[4] infection


Infant secretor status affects susceptibility to rotavirus PROVIDE study (Dhaka, Bangladesh)

Infant secretor status affects susceptibility to rotavirus PROVIDE study (Dhaka, Bangladesh)

Infant secretors have improved responses to Rotarix

Table 1. Summary of different studies investigating the association between rotavirus vaccine take and secretor and Lewis status. Updated and modified from Reference [2].

Vaccine	Country	Secretor Status	Lewis Phenotype	ewis Phenotype Measurement	
				Seroconversion	
Rotarix	Nicaragua	Non-secretors less seroconversion	Lewis A no seroconversion	After 1 dose	[27]
	Pakistan	Non-secretors less seroconversion	No association	After 3 doses	[28]
	Ghana	Non-secretors less seroconversion	No association	After 2–3 doses	[29]
	Malawi	Non-secretors less seroconversion	No association	After 2 doses	[30]
RotaTeq	Nicaragua	No association	Lewis A no seroconversion	After 1 dose	[27]
RV3-BB	New Zealand	No association	No association	Cumulative	[24]
				Vaccine shedding	
Rotarix	Nicaragua	Non-secretors no shedding	No shedding in Lewis A	After 1 dose	[31]
	Malawi	Non-secretors less shedding	No association	After 1 dose	[30]
	Malawi	No association	No association	After 2 doses	[30]
	South Africa	Non-secretors less shedding	Lower shedding in Lewis A	After 1 dose	[32]
	Brazil	Non-secretors less shedding	Lower shedding in Lewis A	After 1 dose	[7]
RotaTeq	Nicaragua	No association	No shedding in Lewis A	After 1 dose	[31]
RV3-BB	New Zealand	No association	No association	Cumulative	[24]

Infant secretors have improved responses to Rotarix

	Rotavirus IgA se	Rotavirus IgA seroconversion at age 14 weeks		
	n/N (%)	Univariable p value	Multivariable RR (95% CI)	Multivariable p value
Rotavirus IgG titres at a	age 6 weeks (tertiles)		
80-1280 (ref)	129/173 (75%)			
2560	89/132 (67%)	0.17	0.6 (0.4-1.1)	0.09
5120-10240	99/169 (59%)	0.01	0.4 (0.2-0.6)	0.01
Secretor phenotype				
Non-secretor (ref)	80/135 (59%)			
Secretor	230/329 (70%)	0.03	1.8 (1.2-2.8)	0.01

What about maternal status?

- Secretor-dependent antigens are present in breast milk in the form of fucosylated human milk oligosaccharides (HMO)
- Fucosylated HMOs inhibit in vitro infectivity of P[4] and P[8] rotaviruses

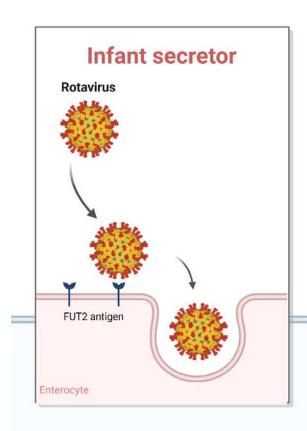
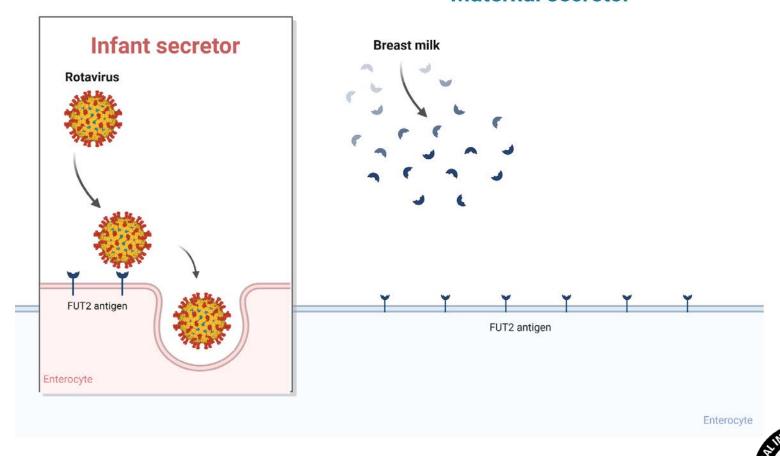
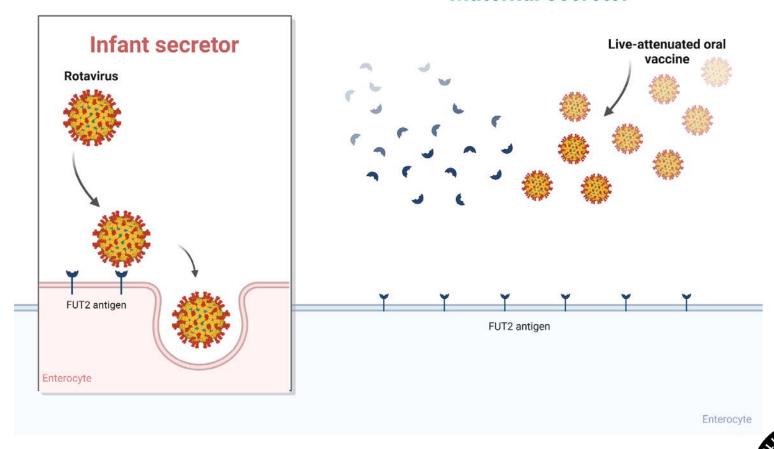

Maternal non-secretor status was associated with improved Rotarix seroconversion (PROVIDE study, Bangladesh)

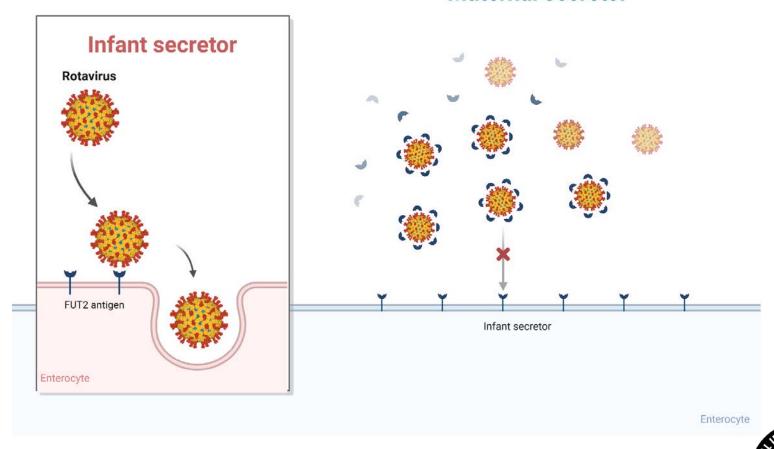
Table 2. Seroconversion by Secretor Phenotype

Secretor Phenotype	Total No.	Seroconversion, No. (%)	RR (95% CI)
All infants	246	72 (27)	
Secretor mother	172	40 (23)	
Nonsecretor mother	74	29 (39)	1.69 (1.14–2.50)
Secretor infant	175	51 (29)	
Nonsecretor infant	71	18 (25)	0.82 (.53–1.27)
Secretor infants			
Secretor mother	144	34 (24)	
Nonsecretor mother	31	17 (55)	2.32 (1.50–3.59)
Nonsecretor infants			
Secretor mother	28	6 (21)	
Nonsecretor mother	43	12 (28)	1.30 (.55–3.07)

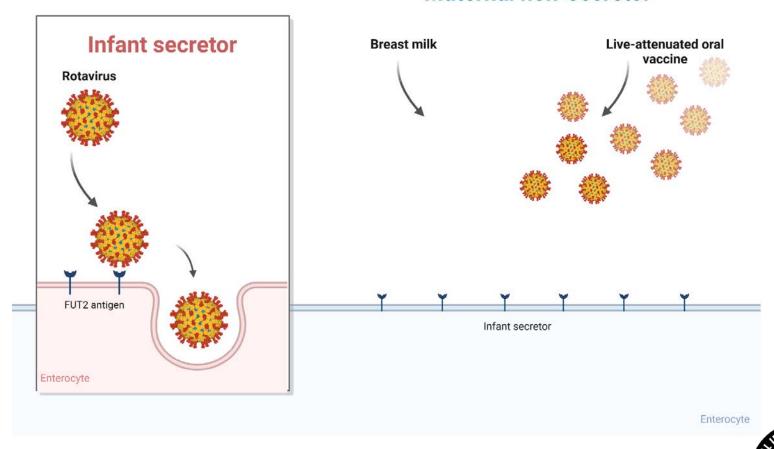




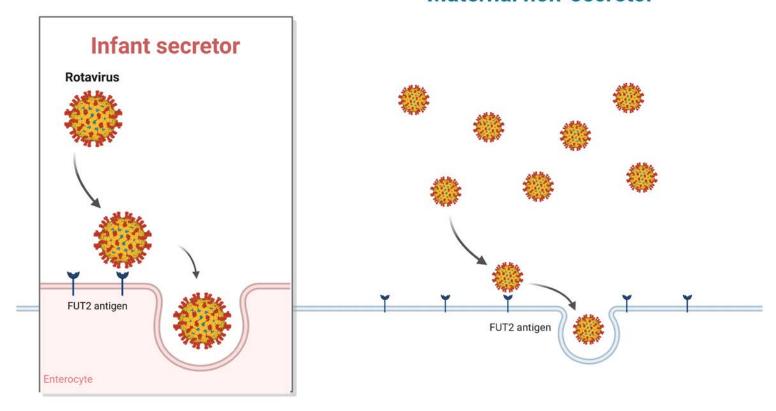
Maternal secretor



Maternal secretor



Maternal secretor



Maternal non-secretor

Maternal non-secretor

What is the effect of maternal non-secretor status on rotavirus diarrhea risk?

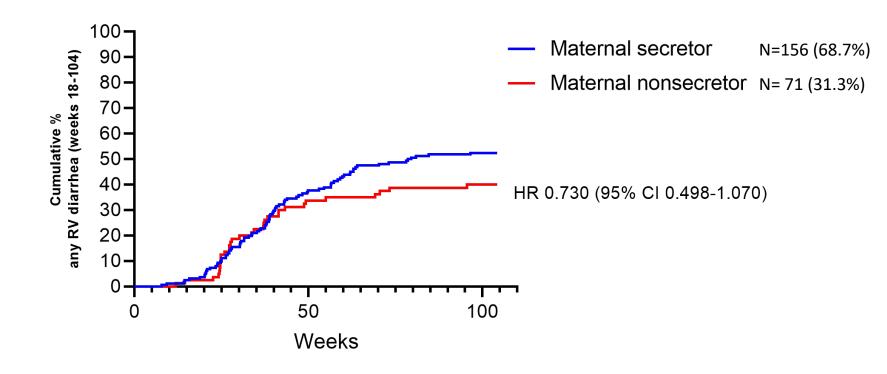
 Hypothesis: Maternal non-secretor status is associated with decreased risk for rotavirus diarrhea in infants compared to infants of maternal secretors, due to increased RV-IgA seroconversion following oral vaccination

Study design: PROVIDE

- Rotarix efficacy trial in Dhaka, Bangladesh 2011-141
 - Vaccine vs no vaccine (I:I randomization) at weeks 10 and 17
 - Active community disease surveillance, birth-2 years

Outcome measures

- RV diarrhea diagnosed by stool EIA
- Infant secretor phenotype determined by saliva dot-blot assay, EIA
- Seropositivity = total serum RV-specific IgA >20 U/mL
- Seroconversion = seronegative pre-vaccination converting to seropositive post-vaccination (week 18)
- Secretor phenotyping on stored breast milk (collected ~week 6) inferred by Lewis antigen EIA²
 - Note: unable to accurately perform UEA-I EIA for secretor positivity on breast milk samples, therefore all specimens limited to Lewis-positive mothers


Methods

- Stratified analyses by vaccination status
 - Unadjusted Kaplan-Meier survival curves
 - Multivariable logistic regression to evaluate maternal non-secretor phenotype as predictor of RV diarrhea through years 1 and 2
 - Controlled for covariates previously implicated in RV risk in this cohort
 - Controlled effect vs total effect model to specifically test RV-IgA contribution
- Vaccine efficacy (VE) = (risk_{unvaccinated} risk_{vaccinated}) / risk_{unvaccinated}

Results: Unvaccinated infants (N=227)

Results: Unvaccinated infants

Effect of maternal	non-secretor	nhenotyne
Ellect of maternal	11011-26016101	pilellotype

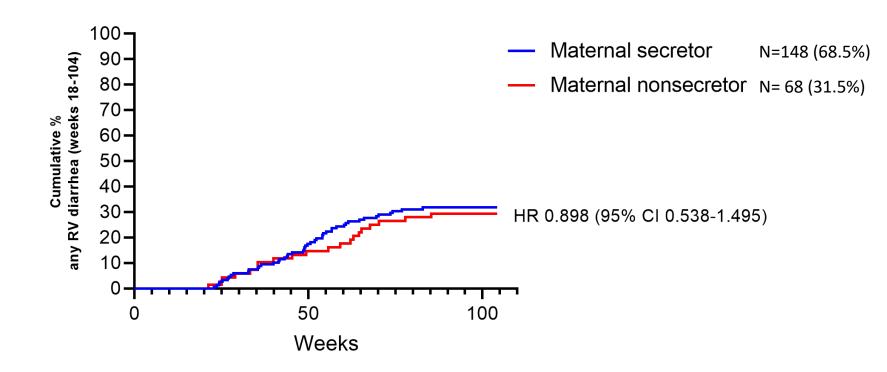
Model including RV-IgA seroconversion	OR	(95% CI)	P-value
Through year 1	1.332	(0.699-2.540)	0.384
Through year 2	0.858	(0.465-1.583)	0.625

Controlling for: Infant secretor status; Household water treatment; Weeks of exclusive breastfeeding; Serum zinc (week 18); Week 10 length-for-age Z score

Results: Unvaccinated infants

Effect of maternal non-secretor phenotype

Model including RV-IgA seroconversion	OR	(95% CI)	P-value
Through year 1	1.332	(0.699-2.540)	0.384
Through year 2	0.858	(0.465-1.583)	0.625


Model excluding RV-IgA seroconversion	OR	(95% CI)	P-value
Through year 1	1.337	(0.702-2.546)	0.378
Through year 2	0.865	(0.470-1.591)	0.640

Controlling for: Infant secretor status; Household water treatment; Weeks of exclusive breastfeeding; Serum zinc (week 18); Week 10 length-for-age Z score

Results: Vaccinated infants (N=216)

Results: Vaccinated infants

Effect of materna	l non-secretor	nhenotyne
Lilect of illaterna	111011-36616101	pricriotype

Model including RV-IgA seroconversion	OR	(95% CI)	P-value
Through year 1	0.943	(0.376-2.367)	0.901
Through year 2	1.406	(0.658-3.005)	0.380

Controlling for: Infant secretor status; Household water treatment; Weeks of exclusive breastfeeding; Serum zinc (week 18); Week 10 length-for-age Z score

Results: Vaccinated infants

Effect of maternal non-secretor phenotype

Model including RV-IgA seroconversion	OR	(95% CI)	P-value
Through year 1	0.943	(0.376-2.367)	0.901
Through year 2	1.406	(0.658-3.005)	0.380

Model excluding RV-IgA seroconversion	OR	(95% CI)	P-value
Through year 1	0.818	(0.338-1.979)	0.656
Through year 2	1.115	(0.547-2.271)	0.765

Controlling for: Infant secretor status; Household water treatment; Weeks of exclusive breastfeeding; Serum zinc (week 18); Week 10 length-for-age Z score

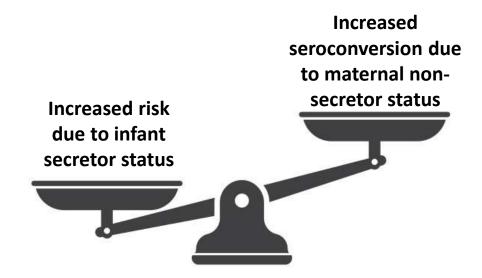
Results: Vaccine efficacy against any rotavirus diarrhea

	VE through year 1 (95% CI)	VE through year 2 (95% CI)
Maternal secretors	44.8 (25.4-69.6)	37.6 (28.2-78.9)
Maternal non-secretors	53.0 (15.1-83.3)	25.2 (-28.3-67.5)

Limitations

- Sampling bias (retrospective sub-study based on specimen availability)
 - Year 2 efficacy slightly higher (48.2%) in parent cohort
 - Sample size limited, particularly for non-secretors
- Unable to examine effects in Lewis-negative mothers
- Unable to assess for contribution of maternal RV-IgG due to low numbers with maternal antibody data

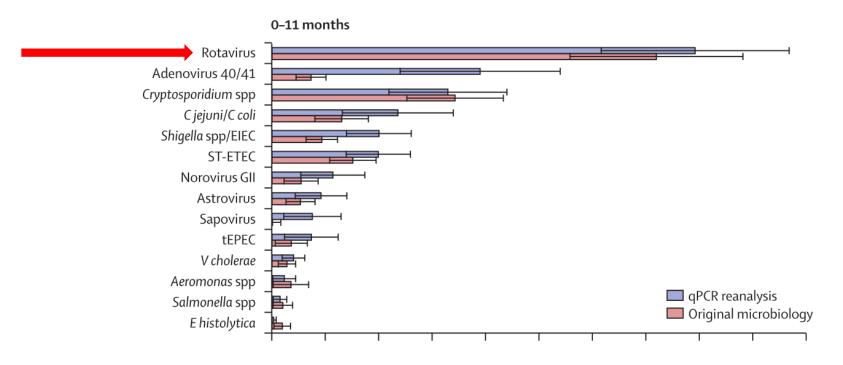
Conclusions


- Maternal breast milk non-secretor phenotype was not associated with increased protection from RV diarrhea
 - No evidence of mediation via RV-lgA, despite evidence of increased RV-lgA seroconversion in vaccinated infants of non-secretor mothers
- Findings are consistent with prior data from MAL-ED suggesting lack of impact of maternal status on rotavirus diarrhea risk
- These findings highlight the limitations of immunogenicity measurement alone in assessing vaccine response

Potential explanations

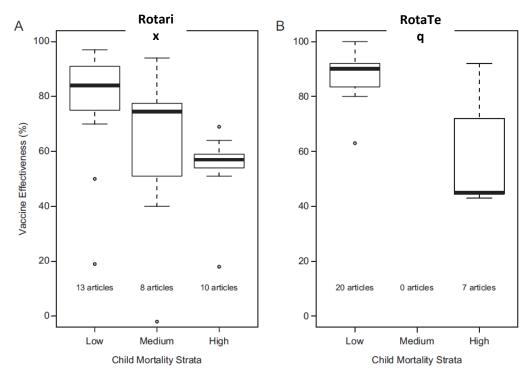
- The effect of infant status on diarrhea risk outweighs maternal
- Low population-level effect due to minority of individuals (including mothers) having non-secretor status
- RV-IgA is a non-mechanistic correlate of protection

Thank you very much

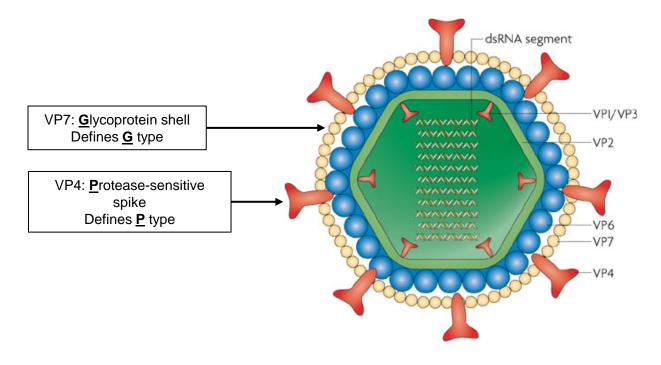


Extra slides

Globally, rotavirus (RV) is the #1 cause of diarrhea in infants



Oral RV vaccines underperform in high child-mortality settings

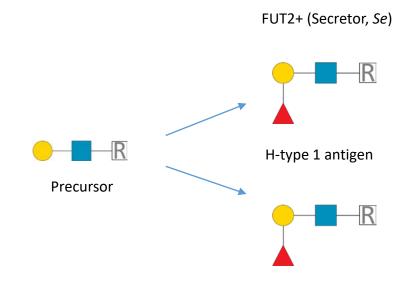


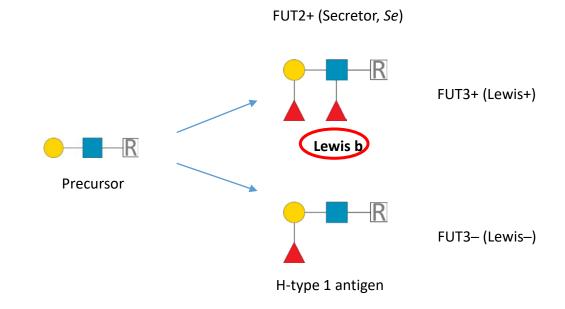
Jonesteller et al 2017. PMID28444323

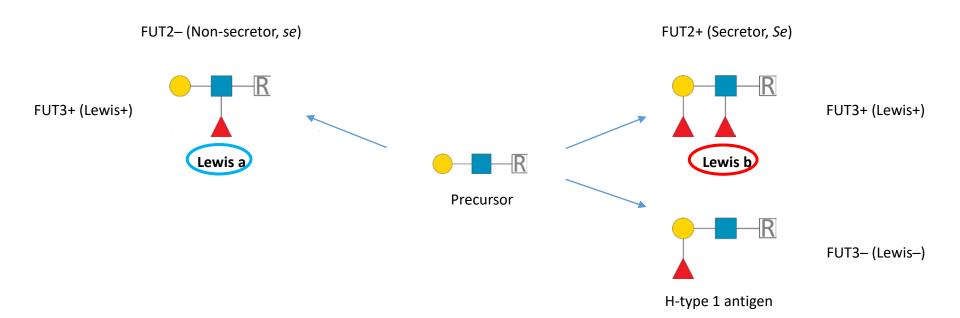
RV: non-enveloped dsRNA virus

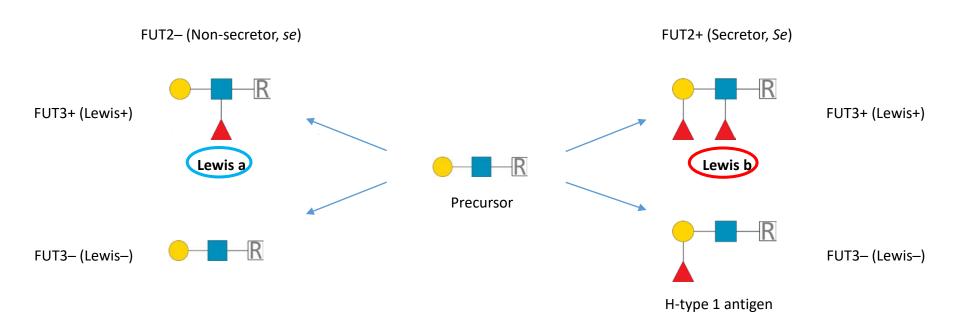
Nature Reviews | Microbiology

Angel et al 2007. PMID 17571094









Secretor status affects susceptibility to rotavirus diarrhea in a P-genotype dependent manner

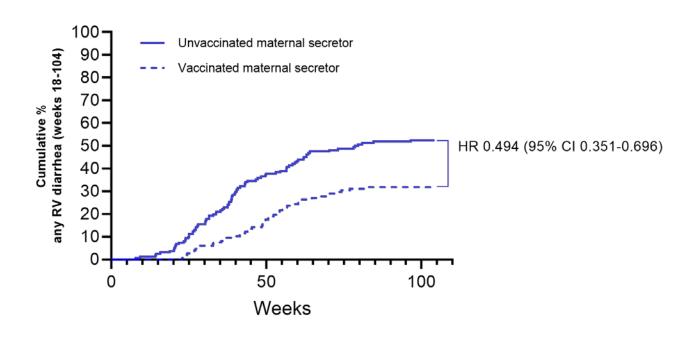
Author, Year	Secre RV+	etors RV-	Non-Se RV+			Odds Ratio [95% CI]
P [8] Payne, 2015	170	630	1	188	——	50.73 [7.06, 364.66]
Van Trang, 2014	74	144	0	31	⊢	32.48 [1.96, 538.25]
Nordgren, 2014	27	165	0	43		14.46 [0.86, 241.74]
Imbert-Marcille, 2014	51	113	0	24	⊢	22.23 [1.33, 372.73]
Nordgren, 2014 [†] RE Model for Subgroup	22	10	0	2	-	10.71 [0.47, 243.48] 26.55 [8.29, 85.03]
P [6] Nordgren, 2014	18	165	9	43	⊢ ■-	0.52 [0.22, 1.24]
Van Trang, 2014	6	144	0	31	-	2.83 [0.16, 51.61]
Nordgren, 2014 [†] RE Model for Subgroup	2	30	2	0 -		0.02 [0.00, 0.44] 0.35 [0.03, 4.11]
P [4] Payne, 2015	17	630	0	188	—	10.46 [0.63, 174.82]
Van Trang, 2014	5	144	0	31	—	2.40 [0.13, 44.49]
Nordgren, 2014 [†] RE Model for Subgroup	7	25	0	2	-	1.47 [0.06, 34.10] 3.56 [0.65, 19.57]
RE Model fo	or All S	Studies			-	4.16 [1.10, 15.77]
				0.0	i I I I I I I I I I I I I I I I I I I I	

Results

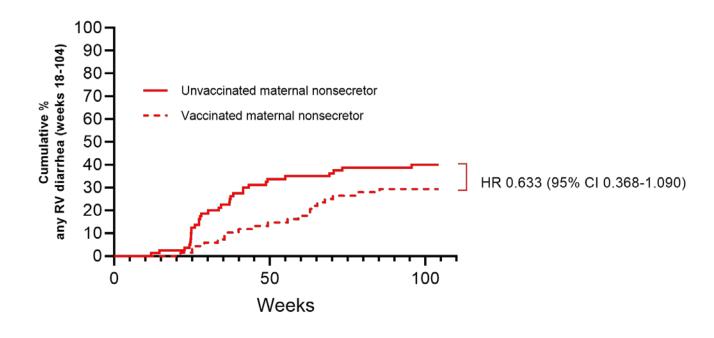
- 486 maternal-infant dyads identified with breast milk data (242 unvaccinated, 244 vaccinated)
 - 227 unvaccinated infants with complete data
 - 156 (68.7%) maternal secretor
 - 71 (31.3%) maternal non-secretor
 - 216 vaccinated infants with complete data
 - 148 (68.5%) maternal secretor
 - 68 (31.5%) maternal non-secretor

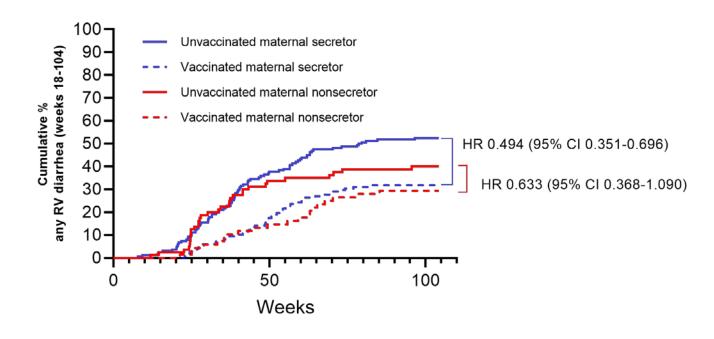
Results: Unvaccinated infants

	Variable	OR	(95% CI)	P-value
Through year 1	Infant non-secretor phenotype	0.335	(0.173-0.648)	0.001
	Lack of RV-IgA seroconversion	1.302	(0.611-2.773)	0.494
	Lack of water treatment	2.008	(1.104-3.651)	0.022
	HAZ at week 10	0.913	(0.668-1.248)	0.568
	Serum zinc level at week 18	1.018	(0.996-1.041)	0.104
	Weeks of exclusive breastfeeding	1.045	(1.009-1.083)	0.013
	Maternal non-secretor phenotype	1.332	(0.699-2.540)	0.384
Through year 2	Infant non-secretor phenotype	0.406	(0.223-0.739)	0.003
	Lack of RV-IgA seroconversion	1.567	(0.764-3.213)	0.220
	Lack of water treatment	1.503	(0.842-2.682)	0.168
	HAZ at week 10	0.978	(0.726-1.318)	0.885
	Serum zinc level at week 18	1.019	(0.998-1.040)	0.075
	Weeks of exclusive breastfeeding	1.045	(1.011-1.082)	0.01
	Maternal non-secretor phenotype	0.858	(0.465-1.583)	0.625


Results: Vaccinated infants

	Variable	OR	(95% CI)	P-value
Through year 1	Infant non-secretor phenotype	0.571	(0.223-1.460)	0.242
	Lack of RV-IgA seroconversion	2.73	(0.983-7.581)	0.054
	Lack of water treatment	1.06	(0.491-2.287)	0.883
	HAZ at week 10	1.058	(0.679-1.648)	0.804
	Serum zinc level at week 18	1.044	(1.012-1.078)	0.007
	Weeks of exclusive breastfeeding	0.999	(0.958-1.042)	0.966
	Maternal non-secretor phenotype	0.943	(0.376-2.367)	0.901
Through year 2	Infant non-secretor phenotype	0.439	0.201-0.962	0.04
	Lack of RV-IgA seroconversion	3.366	1.484-7.634	0.004
	Lack of water treatment	0.917	0.477-1.765	0.795
	HAZ at week 10	1.113	0.772-1.603	0.567
	Serum zinc level at week 18	1.036	1.011-1.062	0.005
	Weeks of exclusive breastfeeding	0.984	0.949-1.019	0.36
	Maternal non-secretor phenotype	1.406	0.658-3.005	0.38


Results: Vaccine effects


Results: Vaccine effects

Results: Vaccine effects

